LA-10801-MS

UC-11 and UC-32 Issued: August 1986

BSTLC: A Computer Code to Locate Rockbursts

Edward M. Van Eeckhout*

*Long-Term Visiting Staff Member at Los Alamos. Mining Department, Montana College of Mineral Science and Technology, Butte, MT 59701.

LOS Alamos National Laboratory Los Alamos, New Mexico 87545

CONTENTS

LIST	0F 1	ΓABLE	S.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vi
ABSTR	RACT	• •			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Ι.	INTE	RODUC	CTION		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	1
II.	SUM	MARY			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
III.	BACI	KGRΟι	JND		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
	Α.	Prev	/ious	Со	des	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
	В.	BSTL	_C De	vel	opr	ner	nt	•	•	•	•	•	•	•	•	•	•	•	•	•	3
IV.	CODE	E VAL	.IDAT	ION	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
APPEN	XIDIX	Α:	USER	DI	RE	CT	101	۱S	•	•	•	•	•	•	•	•	•	•	•	•	17
APPE	ND I X	В:	CODE	LI	ST:	INO	à	•	•	•	•	•	•	•	•	•	•	•	•	•	19
REFER	RENCE	ES.																			29

LIST OF TABLES

Ι.	GEOPHONE LOCATIONS	9
II.	HIT TIMES FOR EVENTS 1 THROUGH 5	9
III.	EVENT LOCATIONS VERSUS BUMINES LEAST-SQUARES (LSSQ) SOLUTION .	10
IV.	EVENT LOCATIONS VERSUS BSTLC SOLUTION	10
٧.	BSTLC OUTPUT FOR EVENT 1, USING NO FILTERING AND GUESS1	11
VI.	BSTLC OUTPUT FOR EVENT 2, USING NO FILTERING AND GUESS1	11
VII.	BSTLC OUTPUT FOR EVENT 2, USING NO FILTERING AND GUESS2	12
VIII.	BSTLC OUTPUT FOR EVENT 3, USING FILTERING AND GUESS1	13
IX.	BSTLC OUTPUT FOR EVENT 4, USING NO FILTERING AND GUESS1	15
Х.	BSTLC OUTPUT FOR EVENT 5, USING NO FILTERING AND GUESS1	15

BSTLC: A COMPUTER CODE TO LOCATE ROCKBURSTS

by

Edward M. Van Eeckhout

ABSTRACT

The computer code BSTLC was written to locate rockbursts using five or more "hits" experienced by a geophone array. The code is based on solving a set of equations nonlinearly as each new hit is added to the data mix. Field trials of the code at the Sunshine Mine, Kellogg, Idaho, have shown that rockbursts can be located within 100 ft. The error encountered appears to be due to geologic and mining variables.

I. INTRODUCTION

In December 1984, the Sunshine Mining Company of Kellogg, Idaho, requested assistance in re-establishing its rockburst monitoring system. To accomplish that purpose, one graduate student from Montana Tech (John Jordon) was stationed on site to work on field installations. Additionally, this author wrote a computer code that would calculate burst locations given field data input from a geophone array (that is, time of hit and location of geophone). This report summarizes the programming effort and compares the location results of the new code (BSTLC) with those of other codes that have been used in the mining district. Appendix A gives user directions for BSTLC; Appendix B gives a listing of the code.

II. SUMMARY

The FORTRAN-based BSTLC can calculate rockburst locations from five or more hits to a geophone array. Test results have indicated that the code calculates burst locations as well as or better than any other code available, although the average location error experienced in the Sunshine Mine is still about 100 ft.

Some questions remain unanswered and require further investigation:

How does the geophone location affect solutions (i.e., planar versus spherical array)?

What are the best ways to throw away erroneous data points?

Why are the calculated burst locations still 100 ft off on the average?

III. BACKGROUND

Monitoring rockburst locations, both for safety and for predicting regions of instability, has become common in the Coeur d'Alene District of Idaho (see, for example, Blake, 1983). Most mines use these monitoring systems to locate bursts "after the fact," not as a tool to predict burst-prone areas. A great deal of effort has been expended in predicting damaging bursts from microseismic percursors (see Carlisle, 1983, and Langstaff, 1979), and it is clear that more work needs to be done on this aspect of the problem. Such work, which requires more resources than individual mines have at their disposal, has not received a great deal of attention recently.

This report deals specifically with the development of a new computer code to locate bursts in a mining situation—implementation of the code is described by Van Eeckhout et al., 1986.

A. Previous Codes

Codes commonly used for rockburst locations are based on those summarized first by Blake et al. (1974) and include the codes DIRSOLC, DIRSQRO, XYZVSE, and GBLK. The first is a P-wave direct solution for a burst location given five hits and a known velocity; the second and third are least-squares solutions for more than five hits; and the fourth is a generated block method that compares hit sequence with theoretical hit sequences given a certain source block. A more recent description of the use of these codes in mining is given in Blake (1982).

The problems one encounters using these codes are not great, and they have generally given good results depending on the application. However, these codes subtract the equation involving the first phone from the rest, making a set of linear equations from the nonlinear ones. Thus the least-squares solution tends to reduce the solution by one degree of freedom. It seems more appropriate to solve the entire set of equations using a nonlinear approach, allowing the solution to "float" more freely, and that is the intent of the code developed here. A somewhat similar approach has been described by Redfern and Munson (1982), but it is not yet widely used in the industry.

B. BSTLC Development

BSTLC is a code that solves a set of nonlinear equations (with the following unknown: time to first phone; gt; Cartesian coordinates gx, gy, and gz; and velocity v) by converging to a solution from a "first guess." It approaches the solution in a manner similar to the Newton-Raphson method of finding solutions for a single nonlinear equation, only with five unknowns—not one. Thus the coding reduces to setting up convergence techniques for an exactly determined (five equations, five unknowns) or an overdetermined (six or more equations, five unknowns) set of equations, as well as finding suitable first guesses. After that, various "filtering" techniques may be used to drop phones that do not fit the pattern (however that may be defined).

The equation being solved is

$$(t_i + gt) = sqrt \left\{ (x_i - gx)^2 + (y_i - gy)^2 + (z_i - gz)^2 \right\} / v,$$
 (1)

where

t_i = arrival time at geophone i (with all phones being relative to the first hit),

gt = unknown arrival time from the burst to the first phone hit,

 x_i , y_i , z_i = locations of i^{th} geophone,

gx, gy, gz = unknown location of burst, and

v = unknown velocity.

Thus, there are five unknowns: gt, gx, gy, gz, and v.

If Eq. (1) is redefined as

$$F = (t_i + gt) - sqrt \left\{ (x_i - gx)^2 + (y_i - gy)^2 + (z_i - gz)^2 \right\} / v$$
 (2)

and if each ith equation is set equal to zero for each of five hits in the exactly determined case, an iterative technique will find a solution (if the first guess is close enough) by updating the guess as follows:

$$gt = gt - s(1),$$

$$gx = gx - s(2),$$

$$gy = gy - s(3)$$
,

$$gz = gz - s(4)$$
, and

$$v = v - s(5)$$
.

 $\{s\}$ is an array of solutions to the following set of equations:

$$\begin{bmatrix} F_{t1} & F_{x1} & F_{y1} & F_{z1} & F_{v1} \\ F_{t2} & F_{x2} & F_{y2} & F_{z2} & F_{v2} \\ F_{t3} & F_{x3} & F_{y3} & F_{z3} & F_{v3} \\ F_{t4} & F_{x4} & F_{y4} & F_{z4} & F_{v4} \\ F_{t5} & F_{x5} & F_{y5} & F_{z5} & F_{v5} \end{bmatrix} \begin{pmatrix} S_1 \\ S_2 \\ S_3 \\ S_4 \\ S_5 \end{pmatrix} = \begin{pmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \\ F_5 \end{pmatrix},$$
(3)

where

 F_{ij} = the ith partial derivative of F for the jth phone, S_i = adjustment to the ith value in the solution, and F_j = the value of F [Eq. (2)] for the jth phone.

Introductory details to this method are discussed in James et al. (1977, pp. 271-273) and Dahlquist and Bjorck (1974, pp. 248-253). The coding of this technique is in subroutine NEWT and SETUP (see Appendix B). The matrices are solved using a Gaussian elimination technique with back substitution (in subroutine Gauss, Appendix B). This method appears to work well, unless the matrices are too ill conditioned (i.e., the phones lie near a single plane) or the solution is unreasonable. The program will only iterate 20 times, and then it will print ***SOLUTION DIVERGING***.

If more than five hits are experienced, the set of equations becomes over-determined and can be solved by minimizing the residuals in a least-squares manner, by using a linearized approximation. In this case, the adjustment to each iteration can be written as follows (Dahlquist and Bjorck, 1974, p. 443):

$$[F']^{\mathsf{T}}[F'] \{s\} = [F']^{\mathsf{T}} \{F\} , \qquad (4)$$

where

$$[F']^{T} = \begin{bmatrix} F_{t1} & F_{t2} & \cdots & F_{tm} \\ F_{x1} & F_{x2} & \cdots & F_{xm} \\ F_{y1} & F_{y2} & \cdots & F_{ym} \\ F_{z1} & F_{z2} & \cdots & F_{zm} \\ F_{v1} & F_{v2} & \cdots & F_{vm} \end{bmatrix},$$

 $F_{i,j}$, S_i , F_j = as before, and m = number of phones hit.

Again, the coding of this method is in subroutine NEWT and SETUP, and all contributions over icount equations (icount is simply a counter for the number of equations) must be added and then solved.

The first problem with any iterative solution is the first guess. If that guess is too far away from the solution, the approximations to the solution may diverge. Two choices for the first guess have been incorporated into BSTLC: one choice is based on averaging all phone locations hit within 10 ms (subroutine GUESS1), and one is based on a direct solution of five phone hits, which was suggested by Blake et al. (1974, pp. 37-39) (subroutine GUESS2). The first alternative guesses gt = 0.05 s and v = 15000 ft/s and then averages x_i , y_i , and z_i for all phones hit in the first 10 ms. The second alternative fixes a velocity of 15000 ft/s, allows gt to "float," and solves directly for first guesses gt, gx, gy, and gz.

The next concern is to find some method to filter "bad" phones (that is, those phones that may not fall into the solution sequence very well, but were tripped inadvertently, or those phones that received a signal through a quite different material, such as fill). The assumption made in the development of BSTLC was that the closer the phone is to the event, the better the chances of a good "clear" hit. (That is, we hope not too much fill or other material will interfere.) This assumption will not always be true, but it seems to be a good starting point. Thus, the set of equations is solved for each new phone added to the matrix.

BSTLC has two filtering techniques incorporated into it; both are contained in the main part of this code. The first technique simply drops a phone from inclusion when the addition of that phone causes a divergence from a previous solution. The second technique starts by solving all sets of equations (when there are more than six phones) and then dropping one phone at a time. The standard deviation of the differences from the fit value is calculated for each set $[s = \sqrt{\text{variance}/(n-5)}]$, and the set of phones with the least deviation (the best fit) is compared with the

deviation for all phones. If that deviation (called difdev) is greater than the t-statistic value times difmin, then the phone causing the greatest change (itemp) is discarded. For example, if the deviation of eight phones is 15 ft, the minimum deviation for seven phones is 1.2 ft, and the t-statistic for 2 degrees of freedom (7 minus 5) is 9.925 at 99% confidence (Blank, 1980, p. 630). Then the jump from 1.2 x 9.925 = 11.9 to 15 is too great and the bad phone is discarded.

IV. CODE VALIDATION

The first field test of BSTLC was performed at the Sunshine Mine, Kellogg, Idaho. A series of five test blasts were monitored using a network of 48 geophones. Locations of all phones are indicated in Table I, which is really a print-out of the GEOPH.DAT file. The identification number of the phone is first, and then x, y, z coordinates are listed for each phone. Because of the tabular nature of the orebody, the phones were located in a somewhat planar distribution pattern.

Table II lists the sequence of hits and times for Events (test blasts) 1 through 5. The actual locations, along with the BuMines least-squares solution for each event, are given in Table III. These solutions were provided from the site; no reasons can be found to explain why the velocities calculated are so inaccurate. In general, the solutions were from 50 to 500 ft off (with an average of 165 ft). Error was probably due to a number of factors: (1) the variable geology (a constant velocity is assumed), (2) some questions involving the triggering level of the geophones, and (3) errors in surveying blasts and geophones. But will BSTLC do any better?

Table IV lists the event locations plus the BSTLC location using filtering. The average error in this tabulation is 100 ft, which is still not particularly satisfying, but it is better.

Table V lists output for Event 1. Note that phone 9 was thrown out because it caused divergence after one good solution had been obtained. Nothing particularly remarkable was noted after that.

Table VI lists output for Event 2. Note that a solution was finally obtained after phone 6 was hit. The residuals (difdev) remained quite stable. However, Table VII shows what might happen with a bad guess. The initial direct solution is too far off and causes divergence. In general, the closest geophone method of guessing (subroutine GUESS1) was found to be better than the direct solution method (GUESS2).

Table VIII gives detail on filtering Event 3, the one event that really initiated the filtering portion of the code. Note how a deviation near zero was found for six phones and how adding a seventh generally put the deviation outside the tolerable level. Only one subsequent phone was allowed. The solution was fairly accurate.

Table IX gives the solutions for Event 4. A nice orderly progression is noted here.

Table X gives the solutions for Event 5. Note the jump in difdev. A smaller confidence interval might throw out a subsequent phone, which could be the basis for a slightly better solution. That possibility awaits further case examples.

TABLE I
GEOPHONE LOCATIONS

TABLE II
HIT TIMES FOR EVENTS 1 THROUGH 5

Event 1	Event 2	Event 3	Event 4	Event 5
1,0. 3,.0012 5,.00205 4,.009 10,.00915 9,.0107 6,.0132 15,.02415 11,.02645 2,.02745 14,.0297 8,.0317 7,.0369 21,.0391 22,.04225	1,0. 3,.00335 5,.0047 10,.0113 9,.01275 4,.0128 6,.01555 15,.02565 2,.0257 8,.0282 14,.0312 11,.0329 50,.0385 21,.0409 24,.043	10.0. 300205 90037 10059 50061 1401045 601065 80133 1501615 130188 20197 1102205 402305 200257 220285	17,0. 11,.00305 16,.0075 22,.01375 6,.01475 15,.016 21,.01625 3,.0216 9,.0217 14,.0227 5,.0259 20,.03195 24,.03465 25,.03705 8,.04035	39,0. 38,0015 40,0076 29,0084 30,0104 31,01375 47,01425 46,0238 41,04255 50,0881
2004485	220443	21,.0292		

TABLE III

EVENT LOCATIONS VERSUS BUMINES LEAST-SQUARES (LSSQ) SOLUTION

Event No.		x	y .	Z	V	Error	Number of Phones Used
1	Actual	852	306	-1811	-	<u>-</u>	_
	LSSQ	888	216	-1704	12840	144	16
2	Actual	840	315	-1811	-	-	-
	LSSQ	824	208	-1801	17590	109	16
3	Actual	852	418	-1950	-	-	-
	LSSQ	905	449	-1948	4040	61	16
4	Actual	1279	417	-2218	-	-	-
	LSSQ	843	288	-2113	28800	462	16
5	Actual LSSQ	-375 -314	138 167	-919 -911	- 5440	- 51	10

TABLE IV

EVENT LOCATIONS VERSUS BSTLC SOLUTION

Event No.		x	У	Z	v	Error	Number of Phones Used
1	Actual	852	306	-1811	_	_	_
	BSTLC	904	225	-1718	15140	134	15
2	Actual	840	315	-1811	_	_	_
	BSTLC	856	245	-1744	16220	98	16
3	Actual	852	418	-1950	-	_	_
	BSTLC	885	436	-1926	17300	45	7
4	Actual	1279	417	-2218	_	_	_
	BSTLC	1396	406	-2209	27560	118	16
5	Actual	- 375	138	-919	-	_	_
	BSTLC	-319	189	-876	8450	87	10

TABLE V

BSTLC OUTPUT FOR EVENT 1, USING NO FILTERING AND GUESS1

DATA FILE USE	ED. F1d	101 dat				
NO FILTER USE	ED					
INITIAL GUESS	s: using #	ve of nea	rest phone	s [t 4 v 4	Fixed)	
t : 0	050 x =	871 y =	277 2	1888 V	15000	
SOLUTIONS:						
T	x	Y	2	٧	DIFDEV	PHONES USED
0.01265	1011	252	- 1510	27171	0.0	1, 3, 5, 4,10,
	*** DIV	ERGING SC	LUTION ***			1, 3, 5, 4,10, 9,
PHONE 9 15	DUT					
0.01226	8 6 9	252	- 1775	15888	27 4	1, 3, 5, 4,10, 6,
0 01514	856	249	-180C	13266	21.2	1, 3, 5, 4,10, 5,15,
0.61303	881	244	- 1745	15777	27 4	1, 3, 5, 4,10, 6,15,11,
0.01341	884	237	- 1747	15420	24.6	1, 2, 5, 4,10, 5,15,11, 2,
0 01479	890	216	-1719	15192	29.8	1, 3, 5, 4,10, 6,15,11, 2,14,
0.01533	893	207	-1715	14996	29 1	1, 3, 5, 4,10, 6,15,11, 2,14, 8.
0.01552	899	221	-1719	14644	27.9	1, 3, 5, 4,10, 6,15,11, 2,14, 8, 7,
0.01519	901	221	- 1720	14818	27.0	1, 3, 5, 4,10, 5,15,11, 2,14, 8, 7,21,
0 01489	904	222	-1716	15042	26.8	1, 3, 5, 4,10, 6,15,11, 2,14, 8, 7,21,22,
0.01451	904	225	-1718	15137	26.0	1, 3, 6, 4,10, 6,15,11, 2,14, 8, 7,21,22,20,

Phones not used in last solution given: 3,

TABLE VI
BSTLC OUTPUT FOR EVENT 2, USING NO FILTERING AND GUESS1

DATA FILE USE	D: fld	102 . dat				
NC FILTER USE	D					
INITIAL GUESS	using a	ve of nea	rest phone	s (t & v +	ixed)	
t : 0.	050 x =	942 y :	265 2	= -1823 V	· 15000	
SOLUTIONS:						
Ŧ	x	Y	z	٧	DIFDEV	PHONES USED
	*** DIV	ERGING S	LUTION ***			1, 3, 5,10, 9,
	*** DIV	ERGING S	DLUTION ***			1, 3, 5,10, 9, 4,
0.01092	928	302	-1651	18884	28 3	1, 3, 5,10, 9, 4, 6,
0.01156	902	283	- 1704	16240	24.3	1, 3, 5,10, 9, 4, 6,15,
0.01153	905	285	-1696	165:7	21 5	1, 3, 5,10, 9, 4, 6,15, 2,
0 01185	804	282	-1697	16402	19 4	1, 3, 5,10, 9, 4, 6,15, 2, 8.
0 01307	907	266	-1671	16073	25 7	1, 3, 5,10, 9, 4, 6,15, 2, 8,14,
0.01241	872	280	- 1739	14829	22 7	1, 3, 5,10, 9, 4, 6,15, 2, 8,14,11,
0 01215	867	261	-1722	15262	29.7	1, 3, 5,10, 9, 4, 6,15, 2, 8,14,11,50,
0.01204	867	261	-1723	15317	28.2	1, 3, 5,10, 5, 4, 6,15, 2, 8,14,11,80,21,
0.00975	859	248	-1742	16380	44 3	1, 3, 5,10 9, 4, 6,15, 2, 8,14,11,50,21,24.
0 00999	856	245	-1744	16216	42.2	1, 3, 5,10, 9, 4, 6,15, 2, 8,14,11,50,21,24,22,

TABLE VII BSTLC OUTPUT FOR EVENT 2, USING NO FILTERING AND GUESS2

DATA FILE USED: f1d102.dat NO FILTER USED INITIAL GUESS: using an initial direct solution (v fixed) t = 0.152 x = 1782 y = 739 z = 303 v = 15000 SOLUTIONS: Z V DIFDEV *** DIVERGING SOLUTION *** 1, 3, 5, 10, 9, *** DIVERGING SOLUTION *** 1, 3, 5,10, 9, 4, *** DIVERGING SOLUTION *** 1, 3, 5,10, 9, 4, 6, *** DIVERGING SOLUTION *** 1, 3, 5,10, 9, 4, 6,15, *** DIVERGING SOLUTION *** 1, 3, 5,10, 9, 4, 6,15, 2, *** DIVERGING SCLUTION *** 1, 3, 5,10, 9, 4, 6,15, 2, 8, 1, 3, 5,10, 9, 4, 6,15, 2, 8,14, *** DIVERGING SOLUTION *** *** DIVERGING SOLUTION *** 1, 3, 5,10, 9, 4, 6,15, 2, 8,14,11, *** DIVERGING SOLUTION *** 1, 3, 5,10, 9, 4, 6,15, 2, 8,14,11,50, *** DIVERGING SOLUTION *** 1, 3, 5,10, 9, 4, 6,15, 2, 8,14,11,50,21, *** DIVERGING SOLUTION *** 1, 3, 5,10, 9, 4, 6,15, 2, 8,14,11,50,21,24, *** DIVERGING SOLUTION *** 1, 3, 5,10, 9, 4, 6,15, 2, 8,14,11,50,21,24,22,

TABLE VIII
BSTLC OUTPUT FOR EVENT 3, USING FILTERING AND GUESS1

DATA FILE USED: fld:03.dat INITIAL GUESS: using ave of nearest phones (t & v fixed) t = 0.050 x = 946 y = 290 z = -1928 v = 15000 SOLUTIONS: 7 × Y Z ٧ DIFDEV PHONES USED *** DIVERGING SOLUTION *** 10, 3, 9, 1, 5, 905 408 -1921 0.00722 21868 32.9 10, 3, 9, 1, 5,14, 8 8 1 9 2 1 8 2 3 8 2 5 8 8 5 8 8 7 8 9 0 396 434 346 427 437 405 415 42 . 6 35 . 6 30 . 1 34 . 2 0 . 0 40 . 6 30 . 3 0.00686 - 19 15 - 19 05 - 19 60 - 18 79 - 19 25 - 19 19 - 19 20 0.00686 0.01049 0.01239 0.01286 0.01055 0.00888 18085 16C10 18247 17440 18575 19338 DIFDEY = 30.3 ALLOWABLE INTERVAL = 1.6 PHONE 5 IS DUT O.01055 885 437
O.01048 884 438
O.01044 881 437
O.01057 890 445
O.01077 881 438
O.01052 886 441
O.01052 884 439
O.01053 884 439 17440 17590 17587 17608 17438 17618 17572 -1825 -1925 -1927 -1922 -1823 -1825 -1925 0.0 3.9 3.4 3.5 1.7 2.1 3.9 2.7 DIFDEY = 2.7 ALLOWABLE INTERVAL = 1.6 PHONE & IS OUT 885 437 892 456 906 458 970 541 855 451 881 411 873 455 888 448 0.01055 0.01443 0.01348 0.01611 0.01458 0.01227 0.01459 0.01283 10, 3, 9, 1,14, 6, 3, 9, 1,14, 6,15, 10, 8, 1,14, 6,15, 10, 3, 1,14, 6,15, 10, 3, 9, 14, 6,15, 10, 3, 9, 1, 6,15, 10, 3, 9, 1, 6,15, 10, 3, 9, 1,14,15, 10, 3, 9, 1,14, 5,15, -1925 -1923 -1910 -1877 -1898 -1918 -1925 -1918 17440 14411 15160 15475 15409 14941 14106 15379 0.0 30.0 32.4 28.0 32.0 23.9 20.5 23.9 1 , 6 DIFDEY . 23.9 ALLOWABLE INTERVAL : PHONE 15 IS OUT 0.01055 0.01190 0.01158 0.01118 0.00986 0.01092 0.01201 0.01119 885 892 904 883 907 884 885 437 439 442 425 433 423 439 434 0.0 14.4 12.7 15.6 10.4 8.2 13.6 -1925 -1925 -1916 -1927 -1927 -1923 -1925 -1924 17440 16066 16558 16478 17155 16587 15677 DIFDEY = 11.1 ALLOWABLE INTERVAL = 1.6 PHONE 13 IS OUT 885 894 907 864 904 885 887 437 442 443 402 434 420 439 17440 15749 16394 15996 17348 16342 15772 16462 0.01055 -1925 0.01055 0.01232 0.01173 0.01153 0.00982 0.01104 0.01204 0.01123 - 1925 - 1928 - 1917 - 1941 - 1937 - 1923 - 1927 - 1926 DIFDEY = 12.6 ALLOWABLE INTERVAL = 1.6 PHONE 2 IS OUT

13

TABLE VIII (cont)

0.01055	885	437	-1925	17440	0.0				
0.01019	887	437	-1924	17824	2.8	10,	3, Y	, 1,14 ,14, 6	ь, б,
0.01048	890	438	- 1923	17611	2.9	10,	a, :	. 14, 6	2 - 1 1 -
0.01052	892	444	-1922	17600	1.8	10,	3, ;	,14, 6	. ! ! .
0.01023	891	438	-1926	17679	3.0	10'	, ;	,14, 6	7,11,
0.01041	888	441	-1925	17720	2.4	10	, ,	, , , , ,	1, 11,
0.01025	888	436	-1925	17775	1.9	10,	3, ,	, 1, 6	1.11.
0.01035	888	438	-1924	17702	2.3	10,	3, 9	1.14	6, 6,11,
DIFDEV :	2.3 ALL	OWABLE IN	TERVAL =	1.5					
PHONE 11 I	S DUT								
0.01055	885	437	-1925	17440	0.0				_
0.02134	959	521	-1812	12073	45.4	, ,	3, 3	, 1,14	
0.02256	1025	540	-1864	13027	42.1	10,		,14, 6	
0.02477	1070	639	-1832	14353	28.5	10,	•	,14, 6	
0.01054	984	461	-1961	15665	38.9	10,	3, 1	, 14 , 6	. 4.
0.02438	1040	540	-1884	14305	60.5	10	3 9	, 1, B	
0.02104	942	530	-1902	12023	48.5	10	7, 5	1,14	1 71
0.01933	8 9 6	546	-1887	13839	42.7	10,	3 . 9	, 1,14	6.4.
DIFDEY :	42.7 ALL	DWABLE IN	TERVAL =	1.6					, ., .,
PHONE 4 1	5 OUT								
0.01055	885	437	-1925	17440	0.0	10			
0.01076	885	437	-1826	17234	1.4	10,	3, 9	. 1,14	, 6,
0.01089	886	437	-1925	17294	1 6	3,		14, 6	,20,
0.01063	882	432	-1927	17304	1.3	10,		,14, 6	,20,
0.01061	886	436	-1926	17312	1.7	10,	4, 1	, 14, 6	,20,
0.01080	885	435	-1925	17335		,,,		14, 6	, 20 ,
0.01074	884	437	-1926	17240	0.9 1.2	10,	3, 9,	, 1, 6	,20,
0.01067	885	436	-1926	17296	1.2	10.	3, 9, 3. a	1,14	.20, , 6,20,
DIFDEV :	1.2 ALL	DWABLE IN	TERVAL =	1 , 6		,		,,,	, 0,20,
0.01186	874	437							
0.01120	859	426	-1931	16265	14.3	3, 9	1, 1,	14, 6	,20,22,
0.01131	848	402	-1937	16616	14.0	10, 1	1, 1,	14, 6	,20,22,
0.01304	846	435	-1945 -1909	16615	12.5	10,	3, 1,	14, 6	,20,22,
0.01131	871	430	-1930	16605	14.8	10,	, 9,	14, 6	,20,22,
0.01183	870	440	-1930	16272	12.6	10,		1, 5	,20,22,
0.01185	877	431	-1928	16219	9.7	10,	, ,	1,14	,20,22,
0.01143	870	431	- 1930	16537	12.2	10, 3	, ,	1,14	, 6,22, , 6,20,22,
								.,,-	. 6,20,22,
DIFDEV	12.2 ALL	DWABLE IN	TERVAL =	12.0					
PHONE 22 IS	DUT								
0.01067	885	436	-1926	17296	1.2	10,	3, 9	, 1,14	6,20,
0.01482	881	464	-1929	14503	33.1	3.	9, 1	.14, 6	,20,21,
0.01308	854	441	-1935	15250	36.1	10,	B, 1	,14, 6	, 20, 21,
0.01451	904	488	-1908	14979	35.6				1,20,21,
0.01910	781	448	-1867	14931	26.0	10,	3, 9	, 14, 6	,20,21,
0.01331	872	450	-1926	15243	36.5	10,	3, 9	, 1, 6	,20,21,
0.01451	866	469	-1927	14619	29.4	10,	3, 9	, 1,14	,20,21,
0.01384	873	431	-1928	14532	22.6	10,	3, 9	, 1,14	6, 8,21,
0.01339	872	451	-1926	15206	29.8	10,	3, 9	, 1,14	6, 20,21,
DIFDEV :	29.8 ALLO	WABLE INT	ERVAL :	12.0					
PHONE 21 IS	DUT								
0.01067	885	436	- 1926	17295	1.2	10,	3, 9	. 1,14	, 6,20,

Phones not used in last solution given: 5, 8,15,13, 2,11, 4,22,21,

TABLE IX
BSTLC OUTPUT FOR EVENT 4, USING NO FILTERING AND GUESS1

DATA FILE USI	ED flo	1104 . dat					
TO FILTER US	ED						
INITIAL GUES!	S using a	ive o'f nea	rest phone	95 (t & v	fixed)		
t = 0	.050 x =	1333 y :	392 z	= -2218	v : 15000		
SOLUTIONS:							
Ť	×	٧	2	٧	DIFDEV	PHONES USED	
0.00789	1399	441	-2181	17883	0 0	17,11,16,22, 6,	
0 00777	1399	442	-2180	17782	3 , 1	17,11,16,22, 6,15,	
0.00790	1396	446	-2175	17596	2 . 4	17,11,16,22, 6,15,21,	
0 00797	1402	424	-2198	17186	5 6	17,11,15,22, 6,15,21, 3,	
0.00798	1402	424	- 2 1 9 9	17178	4 . 5	17,11,16,22, 6,15,21, 3, 9,	
0.00803	1404	420	-2200	17129	5.0	17,11,16,22, 6,15,21, 3, 8,14,	
0.00871	1387	426	- 2192	16122	10.1	17,11,16,22, 6,15,21, 3, 9,14, 5,	
0.00793	1400	425	-2205	17072	12.3	17,11,16,22, 6,15,21, 3, 8,14, 5,20,	
0 00737	1435	399	-2233	18410	17.6	17,11,16,22, 8,15,21, 3, 9,14, 5 20,24,	
0.00766	1400	390	-2223	17042	32.5	17,11,16,22, 6,15,21, 3, 8,14, 5,20,24,28,	
0.00697	1306	406	- 2209	17563	34 E	17 11 15 22 6 15 21 3 8 14 5 20 24 25 8	

TABLE X

BSTLC OUTPUT FOR EVENT 5, USING NO FILTERING AND GUESS1

DATA FILE US	ED: #10	d105.dat				
NO FILTER US	ED					
INITIAL GUES	S using	eve of nes	rest phon	98 (t & v	fixed)	
t = 0	.050 x =	-271 y =	199 z	= -1036	v = 18000	
SOLUTIONS:						
т	x	Y	2	Y	DIFDEV	PHONES USED
0.00577	-316	178	-938	14954	0.0	39,38,40,29,30,
0.00692	-315	180	- 941	14543	4 8	39,38,40,29,30,31,
0.00826	- 333	175	-904	15380	6.6	39,38,40,29,30,31,47,
0 00742	- 317	194	-932	14484	513	39,38,40,29,30,31,47,46,
0 01344	- 349	176	-931	10788	47 4	38,33,40,29,30,31,47,46,41,
0.02216	- 710	186	76	8447	44 1	39 38 40 29 30.31 47 46 41.50.

			•

APPENDIX A: USER DIRECTIONS

The use of BSTLC is quite simple. First create a data file with at least five hits in a format similar to that shown in Table II. The program will interact with the terminal. For example, here is the response to create the output of Table V:

```
$ RUN BSTLC <cr>
Enter the input data file name:
FLD101.DAT <cr>
Enter the output data file name:
FLD101.DAT <cr>
Enter 1 for nearest geophone method of guess:
Enter 2 for direct solution guess:
1 <cr>
Enter 0 for no filtering,
Enter 1 for filtering:
0 <cr>
FORTRAN STOP$
```

The prompts are in lower case printing; responses are in capital letters with a carriage return indicated ($\langle cr \rangle$). The output is contained in FLD101.0UT.

```
APPENDIX B: CODE LISTING
  2 C
3 C
       *** FILE BSTLC.CMN:
  4
              implicit double precision (a-h),(o-z)
  5
             parameter imax=50
  6
             character*20 filein,fileout
             common a(5,6),s(5),n,np1,t(imax),x(imax),y(imax),
z(imax),f(6),xloc(imax),yloc(imax),zloc(imax),
  8
                torig(imax),id(imax),icount,gt,gx,gy,gz,v,
 10
                gto,vo,idiv,idsave(imax),idout(imax),iout,
filein,fileout,iguess,diff(imax),difdev,
 11
 12
                tstat(12), ihead, difmin, itemp, ifltr, iflag
 13 C
             PROGRAM BSTLC
 15
 16
    С
       *** VERSION 1.0
 18
    C *** This program was written by:
 19 C
20 C
                                Ed Van Eeckhout
                                Mining Dept.
Butte Mt 59701
 21
    С
    С
 22
    С
 23
                                (406)496-4298
 24
    С
    C *** LAST REVISED: June 1985
 26
    C C *** VARIABLE IDENTIFICATION:
 28 C
 29
    č
                      . . dummy arrays used to set up the 5X6 matrix
               diff .
 30
    C
                          array to store calculated distance error of phone
                             parameters vs burst location
               difave average of all phone differences in a particular solution (should be zero)
 33
 34
                difdev std dev of the differences
 35
    С
               difmin minimum standard deviation of differences for a set
               of solutions in subroutine FLTR
difsum dummy variable for adding all differences
f . . . array to store partial derivatives in subroutine setup
gto . . original guess on time, to be used for each separate
    С
 36
    C
37
38
39
    00000000
40
                              solution
41
                gt . . solution time to first geophone
42
               gx . . solution x-location of burst
gy . . solution y-location of burst
43
44
                gz.
                          solution z-location of burst
45
                icount number of phones in a solution
46

    id . . array to store id number of all geophones
    idiv . equal to 1 if solution diverges (O otherwise)
    idout . array to store id number of geophones dropped from

    C
47
                              the solution
50
               idsave array to store id number of geophones saved in the
               cumulative solution

ifltr dummy integer flag for filter

ihead . dummy integer flag for printing a header

n . . dummy integer describing size of matrix to be solved

np1 . n + 1, dummy integer for subroutine gauss
52 C
53 C
54 C
s . . array of changes (from gauss) to be made to solutions t . . . array describing 'hit' times to each geophone
                            retained in the solution
               torig . array describing 'hit' tim
found from its id number
                                                         times to each geophone
               tstat . array of t-statistic values at the 99% confidence
               level
v . . . V, solution velocity
               vo . . original velocity guess
    Č
65
               x . . . array describing x-location of each geophone
    000
66
                             retained in the cumulative solution
67
               xloc . array describing x-location of each geophone
68
                            found from its id number
69 C
70 C
71 C
72 C
73 C
               y . . . array describing y-location of each geophone
                            retained in the cumulative solution
               yloc . array describing y-location of each geophone found from its id number
               z . . . array describing z-location of each geophone
74
                        retained in the cumulative solution
75
               zloc . array describing z-location of each geophone
76
                             found from its id number
78 C
      *** SUBROUTINE LIST:
79
    С
```

GUESS1 . . . Subroutine to guess an initial location for

80 C

```
the burst using only phones with t < .01 sec.
                   GUESS2 . . . Subroutine to guess an initial location for the burst using a direct solution.
  HEADER . . . . Subroutine used to print headers for the output.
                  NEWT . . . . . Subroutine to solve the set of equations iteratively (only 20 iterations allowed).
                  SETUP . . . .
                                       Subroutine to set up the set of equations to
                                    be solved by NEWT.
                  GAUSS . . . .
                                      Subroutine that solves a set of linear
                                    equations using Gaussian elimination with
                                    back-substitution.
                  SORT . . . .
                                    . Subroutine to find a set of 5 phones (out of 6) that will converge, if needed.
                  DEVCAL . . .
                                    . Subroutine to calculate standard deviations (and solutions) of all mixes of phones by
  102
       Ċ
  103 C
                                    dropping one phone at a time.
  104 C
  105 C *** Input is effected both interactively and in a data file.
                 Interactive input required are the data file names and program options (guess1 vs guess2 and filtering vs no filtering). Pror commands will be displayed. The data file input is quite straightforward--simply enter each phone number plus the hit
  107 C
  108 C
  109 C
 110 C
                  time on one line in free format.
 111 C
 112 C *** Output is received in the data file named.
 113 C
 114 C *** The solution method employed is an iterative one based on
                 Taylor's series expansion of partial derivatives. It is
                 similar to the Newton-Raphson method of finding roots of
 116 C
 117 C
                 polynomial equations, only it's applied to nonlinear simultaneous equations in this case. Two references to the
 118 C
 119
                 method as used for solving for 5 unknowns (t,x,y,z,and\ v)
 120
                 given 5 'hits' are:
 122
                    Dahlquist, G., Bjorck, A., 1974, Numerical Methods, Prentice-Hall, Inc., pp. 248-253.
 123
 124
 125 C
                    James, M., Smith, G., Wolford, J., 1977, Applied Numerical Methods for Digital Computation, 2nd Ed., Harper and
 126
 127 C
                      Row, pp. 271-273.
 128 C
129 C *** The solution method employed for solving overdetermined
130 C nonlinear equations (number of 'hits' greater than 5)
131 C is described in Dahlquist (1974, pp. 438-446) and is
                 called the Gauss-Newton method.
 133 C
134 C *** The include statement is used here -- a listing of the 135 C variables in common is given at the beginning of the
                program listing
 137 C
138
              include 'bstlc.cmn'
139 C
140 C *** Data statement setting matrix size (n,np1), t, v, and
141 C
                tstat values (at the 99% confidence level)
142 C
             143
144
145
146 C
147 C *** Set input/output file names and optional items
148 C
149
             print *,' Enter the input data file name:'
150
             read (*,1001)filein
print *,' Enter the
151
                          Enter the output data file name:
             read (*,1001)fileout
152
             print *.' Enter 1 for nearest geophone method of guess,
print *,' Enter 2 for direct solution guess:'
153
154
155
             read (*,1003) iguess
             print *,' Enter 0 for no filtering,'
print *,' Enter 1 for filtering:'
156
157
158
             read (*,1003)ifltr
159
             open(61,file='geoph.dat',status='old')
open(71,file=filein,status='old')
160
```

```
161
           open(81,file=fileout,status='new')
162 C
163 C *** Read all geophone locations and save them for future use
164 C
165
        8 read(61,*,end=10)i,xloc(i),yloc(i),zloc(i)
166
           go to 8
167 C
168 C *** Read times for each burst--solve incrementally after the
169 C
             first 5.
170 C
171
       10 read(71,*,end=300)i,torig(i)
172
           icount=icount+1
173
           id(icount)=i
174
           idsave(icount)=i
          t(icount)=torig(i)
x(icount)=xloc(i)
175
176
177
           y(icount)=yloc(i)
178
          z(icount)=zloc(i)
179 C
180 C *** This if statement allows a new solution after each new
181 C
            geophone time is read.
182 C
183
           if(icount.ge.5)go to 12
184
          go to 10
185 C
       12 continue
186
187 C
188 C *** Solve for the geophones used
189 C
190
           if(ifltr.eq.1.and.icount.gt.6)call devcal
191 C
           if(iguess.eq.1)call guess1
if(iguess.eq.2)call guess2
192
193
           if(ihead.ne.1)call header
194
195
          call newt
           if(idiv.eq.1)difdev=5000.
196
197 C
198 C *** Drop a phone if adding it results in divergence (if iflag = 1,
              at least one solution has been obtained).
199 C
200 C
201
           if(idiv.eq.0.and.iflag.eq.0)iflag=1
202
           if (icount.gt.5.and.idiv.eq.1.and.iflag.eq.1) then
203
             idiv=0
204
             iout=iout+1
205
             icount=icount-1
206
             idout(iout)=idsave(icount+1)
207
            write(81,*)
208
            write(81,1005)idout(iout)
209
210
            write(81,*)
             go to 10
211
          else
212
          endif
213
          write(81,*)
214 C
215 C *** This is the filter
216 C
217
           if(ifltr.eq.1.and.icount.gt.6)then
218
            write(81,1004)difdev,tstat(icount-6)*difmin
219
            write(81,*)
220 C
221
             if(difdev.lt.tstat(icount-6)*difmin)go to 10
222 C
223
             iout=iout+1
224
             icount=icount-1
225
             idout(iout)=idsave(itemp)
226
             write(81,1005)idsave(itemp)
227
             write(81,*)
228 C
229
            do 100 i = 1, icount
230
             ij=i
if(itemp.le.j)ij=i+1
231
232
             idsave(i)=id(ij)
233
             id(i)=idsave(i)
            t(i)=torig(id(ij))
x(i)=xloc(id(ij))
234
235
236
            y(i)=yloc(id(ij))
237
      100
            z(i)=zloc(id(ij))
238 C
239
             if(iguess.eq.1)call guess1
240
             if(iguess.eq.2)call guess2
```

```
SUBROUTINE GUESS 1
 2 C
 3 C *** Subroutine to guess an initial location for the burst. Use
             only phones with t < .01 sec.
 5 C
 6
7
           include 'bstlc.cmn'
          xsum=0.
 8
          ysum=0.
          zsum=0.
 9
10
           kcount=0
11 C
12 C
13 C
     *** A do loop to add all phone locations that have a 'hit'
             time of < .01 sec
14 C
          do 50 i=1.icount
  if (t(i).lt..01) then
15
16
17
                kcount=kcount+1
18
                xsum=xsum+x(i)
19
                ysum=ysum+y(i)
20
                zsum=zsum+z(i)
21
                else
22
23
               continue
             endif
24
       50 continue
25 C
26 C
     *** The values 1.,3.,-2. are just random so the first guess
27 C
28 C
             does not sit exactly on only 1 geophone (causing a 0
             divide in the solution).
29 C
30
           gx=xsum/real(kcount)+1.
31
           gy=ysum/real(kcount)+3.
           gz=zsum/real(kcount)-2.
33
           gt=gto
34
           v=v0
35
           return
36
           end
           SUBROUTINE GUESS2
 2 C C C C 5
     *** Subroutine to guess an initial solution using a direct solution method described in USBM Bulletin 665, Appendix C.
             All variables are defined in that publication.
 6 C
           include 'bstlc.cmn'
 8
           dimension locsq(5), d(5), alph(5), beta(5), gamm(5), l(5)
 9
           real locsq, l
10
           v=v0
11
           do 10 I=1,5
           locsq(i)=x(i)**2+y(i)**2+z(i)**2
12
13
           d(i)=v*t(i)
           alph(i)=x(1)-x(i)
beta(i)=y(1)-y(i)
gamm(i)=z(1)-z(i)
14
15
16
17
       10 1(i)=d(i)**2+locsq(1)-locsq(i)
           do 20 k=3,5
18
           a(k-2,1)=2.*(alph(2)/d(2)-alph(k)/d(k))
a(k-2,2)=2.*(beta(2)/d(2)-beta(k)/d(k))
a(k-2,3)=2.*(gamm(2)/d(2)-gamm(k)/d(k))
19
20
21
       20 a(k-2,4)=1(2)/d(2)-1(k)/d(k)
22
23
           n=3
           np1=4
24
25
           call gauss
gx=s(1)
26
27
28
           gy=s(2)
           gz=s(3)
           gt=sqrt((gx-x(1))**2+(gy-y(1))**2+(gz-z(1))**2)/v
29
30
           n=5
           np1=6
31
```

32

return end

```
5
6
7
           include 'bstlc.cmn'
           ihead=1
           ihead=1
write(81,1009)filein
if(ifltr.eq.0)write(81,*)'ND FILTER USED'
if(ifltr.eq.1)write(81,*)'FILTER USED'
if(iguess.eq.1)write(81,1010)
if(iguess.eq.2)write(81,1011)
write(81,1012)gt,int(gx+.5),int(gy+.5),int(gz+.5),int(v+.5)
8
9
10
11
12
13
           return
15 C *** FORMAT STATEMENTS
16 C
    17
25
           end
```

```
SUBROUTINE NEWT
2 C
 3 C *** Subroutine to solve the set of equations--if it doesn't converge
4 C after 20 times, either the solution is unreasonable (outside
             of the allowable range) or the matrix is too ill-conditioned
 5 C
 6 C
          include 'bstlc.cmn'
 8
          do 100 k = 1,20
10 C *** Set up matrix to be solved by subroutine gauss.
          call setup
14 C *** Return changes to be applied to solutions
15 C
          call gauss
17 C
18 C *** Apply changes to solutions after each loop. Solutions are
             allowed in the following ranges:
gt . . . O to 2 sec
19 C
20 C
                 gx . . . -20000 to +20000 ft
gy . . -20000 to +20000 ft
gz . . -20000 to the surface (0)
21 C
22 C
23 C
24 C
                     . . . 3000 to 28000 ft/sec
25 C
          gt=gt-s(1)
26
27
          if(gt.gt.2..or.gt.1t.0.)gt=.05
          gx=gx-s(2)
28
29
          if(gx.gt.20000..or.gx.lt.-20000.)gx=0.
          gy=gy-s(3)
30
           if(gy.gt.20000..or.gy.lt.-20000.)gy=0.
31
          gz = gz - s(4)
33
           if(gz.gt.0..or.gz.lt.-20000.)gz=-5000.
           v=v-s(5)
35
          if(v.gt.28000..or.v.lt.3000.)v=5000.
36 C
     *** Test for convergence (changes in t .1t. .01 msec, x,y,z .1t. 1 ft, and v .1t. 10 ft/sec)
37 C
38 C
39 C
     40
41
42
43
             write(81,1002)(idsave(i), i=1, icount)
44
45
             idiv=1
46
             return
47
             else
48
          endif
     200 idiv=0
51 C *** A measure of the variance of the solution from all the
             data points is the difdev , calculated here. It is a measure of cumulative error, in ft.
53 C
54 C
55
          difdev=0.
56
          difsum=0.
           if(icount.eq.5)go to 301
57
58
          do 300 i=1, icount
          diff(i)=(gt+t(i))*v-sqrt((gx-x(i))**2+(gy-y(i))**2
59
     +(gz-z(i))**2)
300 difsum=difsum+diff(i)
60
61
62
          difave=difsum/float(icount)
          difsum=0.
63
64
          do 400 i=1, icount
     400 difsum=difsum+(diff(i)-difave)**2
65
          difdev=sqrt(difsum/(float(icount-5)))
66
      301 write(81,1001)gt, int(gx+.5), int(gy+.5), int(gz+.5), int(v+.5),
67
68
              difdev, (idsave(i), i=1, icount)
69
          return
70 C
71 C *** FORMAT STATEMENT
72 C
    1001 format(f10.5,4i10,f10.1,5x,20(i2,','))
1002 format(16x,' *** DIVERGING SOLUTION ***',22x,20(i2,','))
73
74
          end
```

```
SUBROUTINE SETUP
 2 C
3 C
4 C
        *** Subroutine to set up matrices to be solved by gauss
 5
               include 'bstlc:cmn'
  6 C
  7 C *** Rezero arrays
  8 C
          do 40 i=1,n
do 40 j=1,np1
40 a(i,j)=0.
  9
 10
 12 C
13 C *** Master DO loop to sum array values over all geophone 'hits'
14 C
15
               do 50 k=1,icount
16 C
17 C *** Define variables for each phone 'hit'. 18 C
                  XF=gx-x(k)
19
20
21
                  YF=gy-y(k)
ZF=gz-z(k)
22
                  TF=gt+t(k)
                  D=sqrt(xf**2+yf**2+zf**2)
F(1)=1.
F(2)=-xf/(v*d)
23
24
25
                  F(3) = -yf/(v*d)

F(4) = -zf/(v*d)
26
27
28
                  F(5)=d/v**2
29
                  F(6)=gt+t(k)-d/v
30 C *** Set up a 5x6 matrix to be solved by subroutine gauss--
32 C the first for an exactly determined solution (5 equations
33 C 5 unknowns), the second for an overdetermined set (icount
34 C equations 5 unknowns). The difdev is of
35 C importance only for the second case (will be 0 for the
36 C first).
37 C
38
                  if (icount.eq.5) then
   do 48 j=1,np1
   a(k,j)=f(j)
39
40
          48
41
                     else
                           do 49 i=1,n
42
                         do 49 j=1,np1
a(i,j)=f(i)*f(j)+a(i,j)
43
44
45
                  endif
46 C
47
          50 continue
48
               return
49
               end
```

```
SUBROUTINE GAUSS
 2 C
 3 C *** Subroutine to solve a set of linear equations--based on
                gaussian elimination with back-substitution.
 5 C
 6 C
      *** Taken from:
                Dorn, Wm., McCracken, D., 1972, Numerical Methods with FORTRAN IV Case Studies, J. Wiley & Sons, p. 174.
 8 C
 9 C
10 C
11
             NM1 = N - 1
12
             DO 600 K = 1,NM1
13
             KP1 = K + 1
14
             L = K
15
17 C FIND TERM IN COLUMN K, ON OR BELOW MAIN DIAGONAL, THAT IS LARGEST 18 C IN ABSOLUTE VALUE. AFTER THE SEARCH, L IS THE ROW NUMBER OF 19 C THE LARGEST ELEMENT.
20 C
            DD 400 I = KP1,N
IF (ABS(A(I,K)) . GT. ABS(A(L,K))).L = I
21
22 400
23 C
24 C CHECK WHETHER L = K, WHICH MEANS THAT THE LARGEST ELEMENT IN
25 C COLUMN K WAS ALREADY THE DIAGONAL TERM, MAKING ROW INTERCH
            COLUMN K WAS ALREADY THE DIAGONAL TERM, MAKING ROW INTERCHANGE
26 C
            UNNECESSARY
27 C
28
             IF (L .EQ. K) GO TO 500
29 C
30 C INTERCHANGE ROWS L AND K, FROM DIAGONAL RIGHT
31 C
             DO 410 J = K, NP1
TEMP = A(K,J)
A(K,J) = A(L,J)
A(L,J) = TEMP
33
34
35 410
36 C
37 C ELIMINATE ALL ELEMENTS IN COLUMN K BELOW MAIN DIAGONAL 38 C ELEMENTS 'ELIMINATED' ARE NOT ACTUALLY CHANGED
39 C
40 500
              DO 600 I = KP1, N
             FACTOR = A(I,K)/A(K,K)
DD 600 J = KP1,NP1
A(I,J) = A(I,J) - FACTOR * A(K,J)
41
42
43 600
45 C BACK SOLUTION
46 C
47
              S(N) = A(N,NP1)/A(N,N)
              I = NM1
IP1=I+1
48
49 710
50
              SUM = O.
             SUM = 0.
DD 700 J = IP1,N
SUM = SUM + A(I,J) * S(J)
S(I) = (A(I,NP1) - SUM) / A(I,I)
I = I - 1
IF (I .GE. 1) GD TD 710
RETURN
51
52 700
53
54
55
56
57
              END
```

```
SUBROUTINE DEVCAL
 2 C
3 C *** Subroutine to find the mixture of phones that gives the
4 C minimum standard deviation (difmin) on calculated fit
 4 C C C C
               original data.
 8
             include 'bstlc.cmn'
 9 C
10
            difmin=difdev
11
             itemp=icount
12
             icount=icount-1
13 C
14 C
15 C
16 C
      *** Sorting routine that drops 1 phone sequentially (j), and computes the 'fit'
            do 60 j =1,icount
do 50 i = 1,icount
ij=i
if(j.le.i)ij=i+1
idsave(i)=id(ij)
18
19
20
            t(i)=torig(id(ij))
x(i)=xloc(id(ij))
22
23
            y(i)=yloc(id(ij))
z(i)=zloc(id(ij))
25
26
        50 continue
27 C
28 C *** Solve
29 C
            if(iguess.eq.1)call guess1
if(iguess.eq.2)call guess2
call newt
30
31
32
33
            if(idiv.eq.1)difdev=5000.
34 C
35 C *** Save the minumum phone no. as itemp
36 C
37
            if(difmin.gt.difdev.and.idiv.eq.O.and.iflag.eq.1)then
38
               itemp=j
39
               difmin=difdev
40
            else
41
            endif
        60 continue
42
43 C
44 C
      *** Reassign original values
45 C
46
            icount=icount+1
            do 100 i=1,icount
idsave(i)=id(i)
47
48
49
            t(i)=torig(id(i))
50
            x(i)=xloc(id(i))
51
            y(i)=yloc(id(i))
            z(i)=z\log(id(i))
52
53
      100 continue
54
            return
55
            end
```

REFERENCES

- Blake, W., 1983, "Microseismic Monitoring for Underground Stability," in Proc. 1st Int'l. Conf. on Stability in Underground Mining, ed. Brawner, SME of AIME, Denver, Colorado, pp. 272-294.
- Blake, W., 1982, "Microseismic Applications for Mining: A Practical Guide," U.S. Bureau of Mines Open File Report 52-83, 206 pp.
- Blake, W., Leighton, F., and Duvall, W., 1974, "Microseismic Techniques for Monitoring the Behavior of Rock Structures," U.S. Bureau of Mines Bulletin 665, 65 pp.
- Blank, L., 1980, <u>Statistical Procedures for Engineering</u>, <u>Management</u>, <u>and Science</u>, McGraw-Hill Book Co., New York, 649 pp.
- Carlisle, S.P., 1983, "New Microseismic Monitoring System Enables Rapid Analysis of Rock Burst Precursors at Hecla's Lucky Friday Mine," in Proc. 24th U.S. Symp. Rock Mech., 20-23 June 1983, Texas A&M, ed. Matheson, Assoc. of Eng. Geol., pp. 645-652.
- Dahlquist, G., and Bjorck, A., 1974, <u>Numerical Methods</u>, Prentice-Hall, Inc., 573 pp.
- Dorn, W., and McCracken, D., 1972, <u>Numerical Methods with FORTRAN IV Case</u> Studies, J. Wiley & Sons, Inc., New York, 447 pp.
- James, M., Smith, G., and Wolford, J., 1977, Applied Numerical Methods for Digital Computation, 2nd ed., Harper & Row Pubs., Inc., New York, 687 pp.
- Langstaff, J.T., 1979, "Computer-Based Microseismic Monitoring of Rock Burst Prone Areas," in <u>Computer Methods for the 80's in the Mineral Industry</u>, ed. Weiss, SME of AIME, Denver, Colorado, pp. 724-734.
- Redfern, F.R., and Munson, R.D., 1982, "Acoustic Emission Source Location -- A Mathematical Analysis," U.S. Bureau of Mines RI 8692, 27 pp.
- Van Eeckhout, E., Jordan, J., Hollis, J., and Hartmann, M., 1986, "Rockburst Monitoring at the Sunshine Mine, Kellogg, Idaho," in Proc. 19th APCOM, 14-16 Apr. 1986, Penn State, ed. Ramani, SME of AIME, Denver, Colorado, pp. 657-667.

